:::ROS

Robot Operating System



Robots and Complexity

A Robot is an amalgam of sensors and actuators, each of
which needs to be interpreted/controlled in synchronicity
with the others so that the whole produces desirable
behaviours. Since microprocessors are typically used to

drive robots, the following can be said about the software
system:

* Very complex,

 Hard to design,

e Difficult to achieve,
 Hard to maintain,

e Contain lots of bugs, and
* Hard to evolve.




Modular Approach

Using a modular approach, the complexity of the robotic system is
abstracted into a graph based hierarchy of conceptually simpler tasks. The
tasks then need to be integrated with each other.

e Sensor and actuator units with built in communication protocols
 CPU intensive tasks need remote processing
* Finite State Machines (FSM) model non-linear behaviours

* Robot as a Service (RaaS) providing computing resources for common
but complex tasks

A robust and versatile communication framework (middleware) is needed
to bring these together.

« ROS
 guWhiteboard
e Others (ppPDC, CARMEN)




Installing ROS

* Linux (Ubuntu 13.10 and 14.04)

— Setup your sources.1ist and get your apt-key
— Install using apt-get
* Mac OSX
— Install Homebrew
— Follow the ROS installation guide

 ROS is available in three styles:

— With everything : “desktop-full”
— Without Simulators and Navigation/Perception : “desktop”
— Without GUI tools : “ros-base”

(see slide notes for more info, or visit http://wiki.ros.org/ROS/Installation)




ROS Command Line Tools

ROS creates an environment within your
command line shell. As such, it has an
extensive list of commands that help you:

* Navigate through packages,

* Create/Build your packages,

* Monitor/Debug/Log Traffic Flows,

e Visualise data and simulation environments

(I have compiled a document that outlines some of these commands)




Other ROS Concepts

ROS makes use of the CMake system, which ROS
refers to as ‘catkin’.

ROS has a large community who have
contributed much code in the form of “Packages”

ROS can be programmed in C++, Python, and
Lisp. And the ‘catkin’ philosophy supports the use
of all of them in a single package.

ROS has a wiki site where APl documentation can
be found (though sometimes difficult), and the
community has a ‘StackOverFlow’ style forum.



ROS Overview

Node 1
(Robot)

Pose

-

Commands

“roscore”

as0d

Node 2
(Simulation Visualiser)

Arrow heads depict direction of data flow
e Away from node = Publisher
® Into node =Subscriber

Line Label denotesthe name of the Topic

0
o
EN
3 | a
)]
B ™
o
L]
Node 3

(Controller Interface)

Topic Name implies a defined message structure /type




ROS Overview

P .
M ‘roscore’ is the

Node 1 | commands o message

(Robot)

marshalling server.
It uses TCP/IP

as0d
SpUBWIWOD
as50d

Node 2 Node 3
(Simulation Visualiser) (Controller Interface)

Arrow heads depict direction of data flow
e Away from node = Publisher
® Into node =Subscriber

Line Label denotesthe name of the Topic

Topic Name implies a defined message structure /type



ROS Overview

Node 1
(Rebot)

Pose

Commands

g

“roscore”

as0d

Node 2
(Simulation Visualiser)

Arrow heads depict direction of data flow
e Away from node = Publisher
® Into node =Subscriber

Line Label denotesthe name of the Topic

(@)

o

3 w
3 | a
) b
o

w

Node3

(Controller Interface)

Topic Name implies a defined message structure /type




ROS Overview

Pose

Commands
P - “roscore”

(Robot)

0
o

3 EN

8 5 |8
3
o
L]

Node 2 Node3

(Simulation Visualiser) (Controller Interface)

Arrow heads depict direction of data flow
e Away from node = Publisher
® Into node =Subscriber

Line Label denotesthe name of the Topic

Topic Name implies a defined message structure /type



MiPal Example Code

Some code you can have a look at to see how ROS
|s put to use:

src/MiPal/GUNao/webots/catkin ws mipal webots/src/webots mipal ros bridge
0 src/MiPal/GUNao/webots/catkin ws mipal webots/src/demo webots ros driver
. src/MiPal/GUNao/webots/EpuckFollowsLineROSController
. src/MiPal/GUNao/posix/guWhiteboardROSbridgeTester
. src/MiPal/GUNao/posix/gusimplewhiteboard/wbperf/ros_publish test.h
. src/MiPal/GUNao/posix/guWhiteboardROSbridge

And

s GettingStarted Webots MiPal ROS Bridge.pdf inthe MiPal Docs folder.

You will notice that the ROS related code in the MiPal folder doesn’t follow the ‘catkin workspace’
layout. This is because we want the codebase to be consistent with the remainder of the MiPal work.
We use a make target to transform this code into the correct layout. ‘make catkin’ will copy the files
into $ {MIPAL DIR}/ros/catkin ws and place them in the right places.




